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SUMMARY 
Velocity and pressure fields for Stokes flow due to a force singularity of arbitrary orientation and arbitrary 
distance between two parallel plates are found, using the image technique and a Fourier transform. Two 
alternative expressions for the solution, one in terms of infinite integrals and the other in terms of infinite 
series, are given. The infinite series solution is especially suitable for computation purposes being an ex- 
ponentially decreasing series. From the series the "far field" behaviour is extracted. It is found that a force 
singularity parallel to the two planes has a far field behaviour of source and image for the parallel compo- 
nents (a two dimensional source doublet of height-dependent strength) whereas the normal component, and 
all fields due to a force singularity normal to the planes, die out exponentially. Velocity fields are compared 
with those of the one plane case. An estimate of the influence of the second wall and when its effect can be 
disregarded is obtained. 

1. Introduction 

In a wide range of animal and plant structures, the outer cells of a surface have hair-like 

extensions called cilia. These cilia move in an organized fashion to produce flow in the 

fluid which is bathing them. 
Among the diverse physiological processes in which this ciliary motion plays an important 

role are the propulsion of micro-organisms, feeding and respiration in plants, and transport  
of  mucous in the respiratory system and of gametes in the reproductive system. 

To understand how ciliary motion performs its functions some theoretical work has been 

done. The first kind of approach that was taken is the so called "envelope model",  which 

replaces the cilia by a waving wall. This model has been used by Blake [2] to model ciliated 
micro-organisms, by Lardner and Shack [5] in modeling fluid transport  in tubules and by 
Ross [8] to model mucous flow in the lung. Results obtained using this model are sometimes 
very poor. For example according to this model velocities of propulsion in micro-organisms 

cannot exceed about  half the wave speed, contrary to observation. This is because the 
envelope approach is appropriate only for Symplectic metachronism where the cilia are 
closely packed together. In Antiplectic metachronism, cilia are very spread out during the 

effective stroke and thus the envelope model is not suitable. The individuality of  the cilium 
must be considered. A more recent approach developed by Blake [3], the "cilia sublayer 
model" takes this into account. Each cilium is represented b y  a line of  force singularities 
in order to first obtain the velocity field due to a single cilium. An expression for the total 
velocity field is then found by summing the contributions of  all the cilia. Blake [3] uses this 
approach in modeling propulsion of micro-organisms. 
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Due to the line of force singularities introduced in this kind of approach, the Green's 
function for the velocity field in the region of consideration has to be known. If  the appli- 
cation is propulsion of micro-organisms the solution for a force singularity (stokeslet) in 
the vicinity of a flat plate is needed and has been given by Blake [1] and previously by 
Lorentz [6]. However, if the application in mind is for example in ciliated tubes, the stokeslet 
singularity has to be studied in a confined region. Using the envelope model, Lardner and 
Shack [5] calculated the flow of sperm through the ductus efferents of the male reproductive 
tract, obtaining results of about 50 times smaller than the observed ones. This is an indi- 
cation that the envelope model is not appropriate so the second approach has to be used. 
For this purpose in this work the solution for a stokeslet between two parallel plates is 
given. De Mestre [7] adapted Faxen's technique to solve for a stokeslet parallel, and mid- 
way, between two flat plates. This he used to solve for a slender cylindrical cylinder falling 
parellel and midway between the two plates, either horizontally or vertically. The present 
work extends his solution to the case when the stokeslet is located at an arbitrary distance 
between the walls, and is of arbitrary orientation. 

The problem is formulated in Section 2. In Section 3 the first part of the solution due to 
repeated reflections of the source in the two planes, is computed. The auxiliary solution to 
get no-slip conditions on the two plates is found in Section 4 using a Fourier transform, thus 
yielding the complete solution in terms of infinite integrals. The solution is transformed into 
an infinite series, in Section 5, integrating over the Hankel contour in the complex plane. 
The resulting series are exponentially decreasing and therefore most suitable for compu- 
tational purposes. In Section 6, these series are used to compute the velocity fields for various 
distances between the plates. The resulting fields are then compared with those of the one 
plane case. 

Since the problem and method of solution is similar to that of Blake [1], we shall use 
Blake's notation as far as possible in order to make the paper easier to follow. 

2. Formulation of problem 

Consider a force singularity (stokeslet) in a viscous incompressible fluid between two 
parallel flat plates a distance H apart, and choose a cartesian coordinate system (x~, x2, x3) 

such that the plates are defined by x3 = 0, and xa -- H (> 0), see Figure 1. We are looking 
for the fundamental singular solutions (velocity and pressure) of the stokeslet situated at 
(Yl, Y2, Y3) = (Yl, Y2, h), satisfying the no-slip boundary conditions on the two planes. 
The three solutions for the pressure and the velocity, respectively 

pk, u k = (u~), j --- 1, 2, 3, k -- 1, 2, 3, (1) 

correspond to a stokeslet in the k-direction, and are the solutions of the Stokes equations 

VP k =- #VZu k + 6(x  - y ) e  k, (2) 

V ' u  k = 0, (3) 

with the boundary conditions 

uk(x. x2, O) = u"(x. x2, H)  = 0. (4)  

Here e k is a unit vector in the k-direction, and # is viscosity. 
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Figure 1. Configuration of the problem. The stokeslet situated at S. 

The solution to equations (2), (3), in an infinite fluid (i.e., solution decaying to zero at 
infinity) is given by 

_~ 1 [- 6jk 

uJ= ~n~ [ I x - y l  + 

1 xk  - -  Yk p k _  
4~z Ix -- y] 3 ' 

(xj - y~)(x~ - Y~)] 
Ix - yl a ' (5) 

(6) 

where Ix - y] is the distance between x and y, see e.g., Blake [1]. This solution takes care 
of the singularity and we are left to solve for the correction, i.e., to solve for 

V~ k = #V2~ k, (7) 

v .  ~ = 0, (8) 

with the boundary conditions 

~ = - - ~ ,  on X3 = 0 ,  H , 

~ given by eq. (5). 

3. Reflection images of the source 

For the case of one plate (equivalent to H ~ or) this problem has been solved by Blake [1] 
taking the image and an additional correction. The image is taken first to simplify the 
analysis as five of the nine components of u~ are then already zero on the boundary. For  the 
case of two plates this "first" image corrects the boundary conditions on one p!ate--but  
disturbs the boundary conditions on the other plate. A multiple reflection has to be taken 

k in order to get the same five components of uj zero on both boundaries, see Fig. 2. It is 
tempting to go one step further and multiply reflect the entire Blake solution in order to 
achieve the no-slip conditions on both plates. Unfortunately the additional correction has 
the distance from one of the plates, h, explicitly appearing in it and simple repeated reflec- 
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Figure 2. Source and first few images (in pairs), a side view. 

tions does not work. We shall therefore first take the repeated reflection solution of equation 
(5), and then solve for the correction using a two dimensional Fourier transform similar 
to that used by Blake [1]. The velocity induced by the source together with all image reflec- 

tions is given by 

k . . . . .  8n#t ~I(l~ ~ 1"~ r.jr.k RnjRnk I (10) 
vj = R .  /~Jk + 3 3 , 

n = - -  ~ ' l i  R I ~  

and the pressure by 

qk__ 1 | ( r . k  R .k~  (10a) 
4n.=-Z ra Ra j ,  

where r.  = it.I, R. = [R,,]. The vectors r., R,  defined by 

r.  = (r.1, rnz, r.3 ) = (x 1 - Yl,  x2 - Yz, X3 - h + 2nil), 

Rn = (Rnl, gn2, Rn3) = (X1 - Yl ,  x2 - Y2, x3 + h -b 2nil), n = 0, _+ 1, _+2 . . . .  
(11) 

are vectors from the source images to the point x. 
k and qk Note that vj are solutions of equations (2) and (3), since all images (n s~ 0 terms 

and Ro) have their sources outside the region 0 < x3 < H, and therefore satisfy equations 
(7), (8) in the above region. 

Using the Lipshitz integral (see Watson [10], page 384) 

1 -- i ~ Jo(p2)e-l"lZd)~, (12) 
(p2 + a2)~ Jo 
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one derives the following results: 

( ) fo ~ s inh2hs inh2(H-x3)d2 ,  oo 1 1 2 J~ sinh 2H Z r,  R, 
n = ~ o o  

p~ = (x l  - y~)~ + (x2 - y~)2, x 3 > h, 

(13) 

and for x 3 -( h replace h by H - h and x a by H - x3, i.e., 

~~ ( 1 1 ) = 2 f o J O ( 2 p ) s i n h 2 ( H - h )  sinh2x3d2, . =-~ ~o r.  R, sinh 2H 
xa<h .  (14) 

k the expression, Using equations (13) and (14) one gets for v i 

fo sinh 2h 
4n~v~ = 6jk J~ sinh 2H sinh 2(H - x 3 ) d ~  

r~rr foo 
+ 5jj~p p - . I o  "~J~('~P) - -  

sinh 2h 

sinh 2H 

fo ' d [ sinh 2h 
- 5~35k3 ) ' J~  sinh 2H 

sinh 2(H - xa)d2 

+ sgn(xa - h)@afk~ + 5yJ~ka)r~ 2 J o ( 2 p ) - -  

q 
sinh 2(/4 - xa)J dX 

sinh 2h 
cosh 2(H - xa) d2, 

sinh 2H 

x 3 > h .  (15) 

Here and henceforth a, fl take on the values 1 or 2 only. For  x a < h replace xa by H - x 3 
and h by H - h under the integral signs only. 

The corresponding pressure is 

2nq k = p 5k~ 2Jl(2p) - -  
sinh 2h 

sinh 2H 
sinh 2 ( / / -  x3)d2 

+ sgn(x3 - h)6ka I ~ )Jo0-P) - - s i n h  2h cosh 2(H - xa)d2, x3 > h. (16) 
3o sinh 2H 

For  x 3 < h replace x 3 by H - x3, h by H - h under the integral signs only. 
k satisfy the following conditions on the two plates: The velocities vj 

4~/w~(xa = 0) = -(3ja6k, + Oj~6k3)r~ 2Jo(2p) 
sinh 2(H - h) 

sinh 2/-/ 
d2, 

f 
co  

4npv~(x3 = H) = (6ja6k~ + 3j~bka)r ~ 2 J o ( 2 p ) - -  
0 

sinh 2h 

sinh 2/-/ 
d2. 

(17) 

Again it is emphasized that e takes on the values 1, 2 only. We therefore have to solve for 
the correction, again equation (7) and (8), but now with the negative of the boundary 
conditions (17). This will be done in the next section. 
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4 .  A u x i l i a r y  s o l u t i o n  

To solve equations (7) and (8) with the negative of the boundary values (17), we shall use 
the two dimensional Fourier transform 

l f [  f ;  ~(21' 22' x3) = ~ oo o~ ~b(rl' r2, x3)e~(;~m+a~r2)drldr2" (18) 

The transformed equations of momentum conservation (7) become 

~gk 
- i2~5~j~ k + 5ja ~ =/~L(~) ,  (19) 

the transformed continuity equation (8), 

�9 k - 12~u3~ + - - - -  = 0, (20) 
c3x 3 

and since a necessary condition is that the pressure must satisfy VZs k = 0, this transforms 

into 

L(~b = 0. (21) 

Here 

#z 
L = - -  -- ~2 ~2 = 22 + 22, (22) 

0x~ 

and the Einstein summation convention is used; see also Blake [1]. 
Transforming the boundary conditions (17), we note that 

0 
~(x3 = 0, H) = - i ~ f  l (v~/r,), l = 1, 2. (23) 

Both conditions in (17) are of the form 

o2Jo().p)f()O d2, (24) 

which can be looked upon as the (inverse) zero order Hankel transform. By Sneddon [9] 
the double Fourier transform equals the zero order Hankel transform if qS(r 1, r2, x3) = 
= ~bl[(r~ + r22) ~, xa] = ~bl(p, x3). We thus get for the transformed boundary conditions 
of w~: 

. ~3 [-sinh ~ ( H  - -  h )  
472//(~(X 3 = 0 ) =  --i(6ja6k~ + 6fit6k3)-~'-[-"a l_ S i ~ f f  _]' 

(25) 
~k ~ [ sinh ~h "] 

4~w~.(x~ = ~/) = i@~5~,. + 5j&~)~-~ L s i - ~ - J "  

The general solution to eq. (21) can be written as 

~k = B k sinh ~(H - x3) + C k cosh ~(H - xa), (26) 
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and the solution to eq. (19) is then 

2 / ~  = B~ sinh ~(H - Xa) + C~ cosh ~(H - x3) 

q- (BkOj3 + ck6ctji)uJ~)X3 sinh ~(H -- xa) 

+ (ckfij3 + Bk6~ji2~/~)(Xa - H) cosh ~(H - x3). (27) 

The coefficients B k, C ~ are found in terms of B~, C~. By inserting eq. (27) into the trans- 
formed continuity equation (20), we get the coupled equations 

C k = ~HB k + ~B k + i2~C~, 

B k = - ~ H C  k + ~C k + i2~B~. (2S) 

We then insert these expressions into the conditions (25) an d finally get 

2~B k = [sinh 2 ~H - (~H)2] -1 

z d sinh ~h ~ d ( s inh  ~(H - h) 
" { i 2 ~ ' 6 ~ ' k [ s i n h ~ H ~ ( s i n h ~ H j + ~ H s i n h r  sinh ~H ) ]  

-4- (~k3~[~hH sinh r - h) - (H - h) sinh ~h sinh ~H]I,  (29) 
) 

and 

2rcC k = [sinh z ~H - (~H)2] - i  

�9 {i2fi~k[~hH sinh ~(H - h) + (H - h) sinh ~h sinh ~H] 

d ( s inh  ~(H - h)_)l } (30) 
sinh ~H ~ -  s~hnh ~/~ " 

_ d / ' s inh~h  
--5k3~ [sinh2 ~H-~-~-s i -~  ~ ) -- ~H 

The transformed velocity is then, 

i 
J 4~# 

sinh (h sinh ~(H - x3) 
�9 ( H  - h )  

sinh ~H 
+ d ( sinh - x3)} (h)c~ 

1 
+ ~ [BkOia + ckifi~j2~/~]Xa sinh ~(H - x3) 

(31) 
1 

+ ~ [ck6~3 + BkicS~j2J~][xa cosh ~(H - x3) - H sinh ~xa/sinh ~H]. 

To get S k and w~ one has to take the two dimensional inverse Fourier transform which is 
again the Hankel transform of order zero. It is easier to separate the cases for j and k 
not equal to three, one of them equal to three and both three. For j and k not equal to 
three we have (since k~ has an i2d2 p component) 
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o ~ ~2 

_ 1 ~ r~ f~ ~J~(p~)A~(~)d~, (32) 
4re# ~r~ p 30 

where 
( 

AI(~) = [sinh 2 ~H - (~H)Z] -1 l~hHx3 sinh ~(H - x3) sinh ~(H - h) 

+ x3[h sinh ~H cosh ~(H - x3 - h) - H sinh ~h cosh ~xs] 

d ( sinh r - h) ) 
+ Cnx 3 sinh i n  cosh ~(n - x3) ~ -  \ ~-h-~/~ 

[ d ( s inh  {h ) '  sinh ~H' __d_d (.sinh ~(H _- h) ) ] } d ~  \ sinh ~H - H s i n h ~ x 3  s inh~H-~ + ~H . (33) 

Aa(~) in equation (33) has already been brought into a form insuring convergence of the 
integral in equation (32). For j = k = 3, 

f ;  l foYo(p~)A2(~)d~, (34) w~ = ~J~162 = 4rc----~ 

where 

A2(r162 

- h sinh ~H cosh ~(H - x3 - h) + ~hH sinh ~(H - x3) sinh ~(H - h) 

_ d / s i n h ~ ( H - h ) ) ]  
+ ~H cosh ~(H - xa) sinh ~ / - -  

. d /' sinh?n_~/~(H - h) ) 
- ~H a sinh r -~-~ 

e ( sinh ~h )'~ 
+ H sinh r sinh CH ~ ~ . , ] j ,  

with the same comment concerning A2(~). 
For j = 3 (first pair of indices) or k = 3 (second pair) we get 

r 0 .f~ �9 -1 ^~,3 
W3'  = -  . -  

- 41rlzl Orr J~162162162162 

(35) 

(36) 

Journal of Engineering Math., Vol. 10 (1976) 287-303 



Stokes flow for a stokeslet between two parallel flat plates 29 5: 

where 

Aa(~ ) = (sinh 2 ~H)- l [h  sinh ~H cosh ~(H - x3 - h) - H sinh ~h cosh ~x31, 

A4(~) = ~[sinh z ~H - (~H)Z]-l{x3~H[h sinh ~(x a - h) 

+ H sinh ~h sinh ~(H - x3)/sinh CH] 

- @H z sinh ~x3 sinh ~(H - h)/sinh ~H 
(37} 

+ (6j3 - 6k3)[-H(H - h) sinh ~h sinh ~x 3 + xa(h sinh ~H sinh ~(H - x3 - h) 

+ H sinh ~h sinh ~xa)]}. 

The contribution of A3(~) in (36), combines with the last term in equation (15), i.e., the  
term giving rise to the non-zero boundary values (17), to  yield the desired boundary con-  
dition (4). We obtain for their sum 

1 (x3 - h)(r~/p)(6ja6k~ + 6j,6ka) sinh ~h sinh ~(H - x3) d~, 
4n-----~ ~JI(P~) sinh ~H 

xa > h, (38} 

and h replaced by H - h, x a replaced by H - x a under the integral sign, for x a < h. 
For  the pressure we get 

s,,= ' foEr  ] 2---~ Jt(Pr162 + J~162 de, (39} 

where 

As(~ ) = ~2[sinhZ ~H - ( ~ H ) 2 ]  - 1  

�9 sinh ~H sinh ~(H - x3) 

+ [~hH sinh ~(H - h) + (H - h) sinh ~h sinh 4/-/] cosh ~(H - xa) / ,  

A6(~) = ~2[sinh2 ~H - (~H)2] -1 

�9 {[~hI-I sinh ~(H - h) - ( / - / -  h) sinh ~h sinh ~H] sinh ~(H - x3) 

r . . . .  d / sinh~h "~ d (s nh 
- -  S l n l a  C H  . . . . . .  

[_ d~ ~ sinh CH ) CH - ~  sinh CH 

�9 sinh i n  cosh ~(H - x3)~. 
J 

(40), 

This completes the solution, i.e. u~ = v~ + w~ and pk = qk + S k. 
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It  would be nice if one could take this solution, or the equivalent form in the next section, 
and deduce from them the types of  image singularities that occur. Unfortunately it is far 

f rom being clear (at least to us) that one can give such a "physical" description at all. Just 

the first part  of  the solution already has an infinite number of  stokeslet images. Therefore 
we shall not at tempt here such a description. For  the far field, i.e., p/H ~ 1 this is possible 

and will be done in the next section. 

  ImZ 

Figure 3. The Hankel contour, C, in tke complex z plane. 

ReZ 

5. Alternative form and the far field behaviour 

Although the solution given in the previous section is complete it is difficult to evaluate 

the behaviour of the far field from it. In order to get a clear picture we shall transform the 
solution using the Hankel contour (Watson [10], p. 423), see Fig. 3. I f  we take the integral 

over the contour C in Fig. 3 as r ~ 0, R ~ oo of 

~ c F(z)zV + 1/_/~l)(bz) dz, (41) 

where b is real, F(z) is an even function of z and F(z) decays exponentially to zero on the 

real axis, as x = R e z  ~ _+ ~ we get 

f o  Jv(bx)x ~ + iF(x)dx = hi. (sum of residues in half plane of F(z)z ~+ 1H~i)(bz) upper 

including one half of the residue at z = 0). (42) 

These are not the most general conditions under which equation (42) holds, but it is suffi- 

cient for our case. 
For  the terms appearing in equations (15) and (38), the singularities of the functions are 

a t  z, = nni/H, n = 1, 2 . . . .  and z = 0 is not a singular point. All integrals can be expressed 

in terms of two integrals, and for them we obtain 

F oo n~h nnx 3 ( n n p  "~ 
sinh xh sinh x(H - x3) dx = 2 ~ sin - -  sin Ko (43) 

So(Xp) sinh n n \ n 7 Jo 
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and 

f o  sinh xh sinh x (H  - x3)dx  
xd l (xP)  sinh x ~  

sin 
H =1 H H H 

Notice that the restriction x3 > h can now be dropped. For  the integrals involving AI(~), 
A2(~), A4(~), A5(~) and A6(~), three types of singularities appear. The first is a simple 
pole at ~ = n~i/H coming from 1/sinh ~H, the second is a double pole at ~ = n~i/H 

coming from 1/sinh 2 ~H, and the third type are simple poles coming from the roots of the 
equation 

sinh 2 z = z 2, (45) 

in the upper half plane (the behaviour at ~ = 0 needs a separate treatment). 
The roots of equation (45) in the upper half plane are z" and - Zm (bar denoting complex 

conjugate) where z"  = x"  + iy ' ,  x"  > 0, y"  > 0 and an asymptotic estimate for them is 

z" ~ ln(2m + 1)~c + i(m + �89 m = 1, 2 . . . . .  (46) 

The first six non-zero roots of equation (45) are given in Table 1. 

TABLE 1 

First six roots of the equation s i n h  2 z = z 2 computed in the first quadrant 

n Zn = xn + iyn 

1 2.2507 + i 4.2124 
2 2.7687 + i 7.4977 
3 3.1031 + i10.7125 
4 3.3522 + i13.8999 
5 3.5511 + i17.0734 
6 3.7168 + i20.2385 

k Applying transformation (42) to uj we find; again separating the three above mentioned 
cases: 

1 ~ I m { s  z'H~~ 

, l f x 3  . , hz" , h x3z" "-k z2) i -t- l j ~ - s l n n ~ c o s n  x3z" H + - ~ - s i n h  H 

k Uj ~ R 3 - -  

I[O 
1 

- - -  sinh 
Z"  

x3z" sinh z ' h  ~ h xa 
H H ]  H H z ' '  

c o s h - -  
h z "  

H 
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.((l+z~)-~coshX3 +h x3 - h  xa+h  ) H z , ,  + cosh ~ z,, - z m sinh - m y -  z,, 

x3 + h h z  m X3Zm l ~ 
--  - -  sinh - -  sinh (47) 

z., 1t H 

where I m (  ) stands for the imaginary part, and we take the square root in the first quadrant. 

k ,,3 1 r~ u I m  - -  zm 
u j - u 3 , ~ =  4~/~ p H =1 (l+Zm2) ~ -  1 H 

x3 - h x 3 + h "~ 
�9 s i n h - ~  z,. _+ z,. cosh H z,. -T- (l + Zm2) ~ sinh x3 H + h z,. ) 

-t-  Z m ( x3 cosh X3Zm 
\ x - t  H 

- -  sinh - -  
x3z  ?) hz m h s i n h - -  cosh 

H H H 

+ s i n h - -  sinh (1 + z2) ~ + x3 
H H - t , - - - W -  - 1 , 

(48) 

where the top signs are taken f o r j  = 3, and the lower signs for k = 3. Notice that  only the 

contributions from the singularities of the third type remain. The contributions f rom the 

imaginary axis cancel with the contributions from equations (15) and (38), and there is no 

contribution from the origin. This is not the case for u~. In this case we get 

k u ~ -  1 a r~ rc 
uj = 4re# ar# P ~ - I m  

+ x3 cosh x3zm sinh hz,, h hz~, x3z~ + - -  cosh sinh - -  
H H H H H H 

x3z m x 3 h 1 x3 + h sinh hzm sinh + - -  - -  
- ( l + z 2 )  + - 1  z, .  H H H H H 

h - x3 x3 + h 
�9 cosh - - H  zm + zm sinh - - H  z,, - (1 + z~Z) ~ cosh - -  

1 ~ r~ Z - -4  sin-nrch sin nZrx3 K1 
+ 4~# &# p ,=1 n~ H H 

+ ~ 6 ~ # H - n = l  ~2 sin H s i n - - - H  K~ 

H 6x, h ( 1 _  ~ ) ( l  h~  3 fr~ ~ 
4~# It H H,]~\-~)" 

Zttl 

x.+h )]7} H zm 

(49) 

The first part  of  u~ comes f rom the singularities not on the imaginary axis, the other two 
from singularities on the imaginary axis, and the last term from the origin. Since we have 

the asymptotic expansions 
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~o ( _  1)re(v, m) 
H~J)(z) "~ (2/rcz) %~(z-~v~-+~) Z 

m = 0 ( 2 i z )  2m 

(v, m) 
K~(z) ,~ (z~/2z)r ~2 ~ 

(2z) 2,-' 

(50) 

k decays exponentially with p if see Watson [10], p. 198, 202 respectively, we see that uj 

k u~ the only term that does not decay either j or k (or both) are equal to three. For  uj = 

exponentially is the last term. Summarizing we obtain 

k Hj ~'~ 

+ j 3  k3 ' - ' \ ~  ~" ] + -~- /9 

(51) 

Here Yl is the imaginary part of the first root of equation (45), given in Table 1. 
Equation (51) shows the drastic effect of the walls on the source field behaviour. A stokes- 

let in the x 3 direction induces an exponentially decaying velocity field with p /H = 

= (x 2 + xZ~)~/H. This holds also for the x 3 component of the velocity field induced by 
a stokeslet in the xl  or x2 directions (a stokeslet parallel to the plates). The parallel com- 
ponents of the velocity field induced by a parallel stokeslet decay like the sum of the source 
and an image, i.e., O[(p/H)-2].  

A source in three dimensions with mass outflow M per unit time induces a flow field 

m r i 
u ~ -  4zc r ~ '  (52) 

and a source doublet of vector strength and direction D, induces a flow field 

Dj ( 6 u 3r~rj "~ 
u , = t , - - Y - +  r 5 ) '  (53) 

which one gets by taking the negative of the gradient of (52) in the chosen direction, see 
Blake and Chwang [4]. If  we take a source in two dimensions, then the two dimensional 
flow field induced is 

m r i 
u i -  2~z r 2 '  (54) 

and a two dimensional source doublet of vector strength and direction D = (D1, D2) 
would be 

Dj ( 3 u 2rir j 

= 5-2 \ - - 7  -+  7 s  (55) 
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If  we look at the leading term in (51) we see that fo ra  parallel stokeslet the far field behaves 
like a two dimensional source doublet, in plates parallel to the two walls, with strength 
depending in a parabolic way on the distance between the two plates, and direction in the 
direction of the original stokeslet. The strength of the source doublet is 

 s-s s-s -U I ss 

where we are measuring distances in units of  H,  i.e., write r l  = H(rllH) etc. 

To complete the alternative form of  the solution we have to give the pressure in the 

transformed form. This is 

pk= 3 r,IH h 1 -  1 r= Im ~ I-I ( l , [ 'pzm'~  z,, 
uH z (p/H) 2 H 2H z p = t-h-)L(1 + * - 1 

(s inhhZmcosh x3z" J ~ (  x 3 - h  x 3 + h  �9 - -  + sinh z m + z m cosh 
H H H H 

- (l + zZ)+sinh XS + Zm)) - zm sinh x3Z'n sinh 

5k3 Im 
2H 2 m= 1 

I_I(1){PZm'~ Zm {sinh h ~  cosh X3Zm 
o ~ - - H ~ J ( l + z ~ )  r  H 

hzm [- + h 
+ - ~ -  Lzm sinh x3 H 

Zm 

Z m - -  (1 + z~) ~ cosh x3 + h x3 - h 1 H - - Z m  - cosh ~ zm 

H (1 + Zm2) ~ cosh X3z" m -- Zm sinh . (56) 

6. C o m p a r i s o n  w i t h  t h e  o n e  p l a n e  c a s e  

It often happens that the singularities which appear in applications are much closer to one 
of the planes than to the other. This happens for example in modeling ciliated tubes using 
slender body theory, since there the cilium generally has a length between �88 and 1 the 
diameter of the tube. In these cases one is tempted to disregard the influence of the second 
wall and to treat the problem with the solution of the one plane case. This is consistent with 
the fact that the solution obtained for the two plane case approaches that of the one plane 
as the distance between the walls becomes relatively greater than the distance of the singu- 
larity from one wall. 

However to fully justify this procedure an estimate of the closeness of the approximation 
must be given. To be able to do this, two questions should be answered; how much does the 
second plane disturb the fields of the one plane case, and for what relations of h/H can we 
consider the solution of the one plane case a "good" approximation to that of the two 
planes. 

In order to see the effect of the other wall on the drag on a body, one would have to 
compare forces rather than velocities (which for slender bodies are proportional). If  one is 

Journal of Engineering Math., Vol. 10 (1976) 287-303 



Stokes flow for a stokesIet between two parallel flat plates 301 

interested in the flow fields produced, when fluid transportation is in mind, velocity fields 

should be compared. For  this purpose, in this section, velocity fields have been plotted for  
different values of / - / ,  including H = co (one plane) keeping h constant. I t  can easily be 
shown, using the integral representation of the solution, that if we keep p and x3 fixed and 
l e t / - / ~  o% we retrieve the solution for a stokeslet above a flat plate given by Blake [1]. 

On the other hand, if (p/H) ~ oo, keeping x 3 and H fixed the solution is entirely different 
than the one plane case. All u~ with either j or k (or both) equal to three (normal to plane) 

die out exponentially with p/H. For  a stokeslet parallel to the two planes, the far field is a 
two-dimensional source doublet of  variable strength (as described in the previous section), 

whereas the far field in the one plane case is a stokes doublet, see Blake and Chwang [4]. 

In Figure 4, we see the variation of the velocity field u2 with the x3 coordinate for two 

different values of the pair r~, rz; in 4(a) r I = r2 = h, in 4(b) r~ = 3h and r 1 = 4h. 
Measuring at the maximum value of  the graphs, we obtain that the disagreement with 

H = oo in the first case 4(a), for H = 4h, H = 6h and H = 8h is 23%, 14% and 5% 
respectively. In contrast, the disagreement in the second case 4 (b) for H = 8h and H = 16h 

is 43 % and 10% respectively. I t  is not surprising that in the second case, farther from the 
singularity, the effect of the wall is stronger, since in the interaction between the singularity 

. 3 -  

. 2 -  / / ~  " ' ~ H  : 8h 

0 I 2 3 
x3/h 

0 . 3  D 

t 

0.2 - / ~ " "  

/ / / -  _ 

T 
x 3 / h  

-0 I L- I 

2 
I 
3 

Figure 4. Velocity profiles of ~ as a function of the dimensionless coordinate xa/h, for various values of H 
(dashed lines represent the one plane case). In (a) the profiles are taken at rl = r2 = h and in (b) at rl = 3h 
and r2 = 4h. 
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~ 
.5 ~ = * *  

.4 \ \ \ /H = 4. 

%~ .3 " ~ \ ~ H - -  3h 

.2 

I 
o i 2 3 4 

r~/h 

along the line parallel to the plates rl = r2 at a height x3 = 0.5h. Figure 5. Variation of the velocity u~ 
As in Figures 4, the dashed line represents the one plane case. 

H=4h .... H ~x.~...__ - 

-.I [- H= 3h 

-.I 

H=4h i"~'~ ~ "'- ~.H.~ ~ 

H=2h -~" x3 /h  

H=3h H=4h % 

Figure 6. Graphs for three other components of the velocity fields. In (a) u 3 is plotted, in (b) uJ and in 
3 As in 4(a) rl r2 h. ~c) .~. = = 
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and the wall, each of  these factors has a dominan t  effect near to itself. This can be more  

clearly seen f rom Figure 5 which is a plot  o f  the velocity u~ against the distance f rom the 

singularity for  a fixed value x a = 0.5h. The drastic effect o f  the wall is also shown here 

since the graphs with finite H decrease very rapidly. 

To illustrate some other  components  o f  the velocity field, in Figure 6 we have plot ted 

3 in (c) against the x3 coordinate for  the pair  the velocities u~ in (a), u3 in (b) and  u~ 

r 1 --- r 2 = h. 
It  is difficult to  draw general conclusions f rom the results obtained in this section since 

the answers to our  original questions will depend on the requirements o f  each application. 

However  it can be seen that  even for  the small region 0 < r~ < h, 0 < r 2 < h, 0 < x 3 < 2h, 

it is necessary to have at least H > 8h to disregard the effect o f  the second wall. 

7. Conclusion 

We have given the Stokes flow field due to a force singularity at an arbitrary location and 

arbitrary orientation between two parallel plates. Two different forms for  the solution were 

given. One in integral fo rm and the other as a sum o f  an infinite series. The infinite series 

fo rm is particularly suited for  computa t ions  since all series behave like a decreasing expo- 

nential and therefore only a few terms are needed even if  p / H  < 1. F r o m  equation (51) 

we see that  only components  parallel to the plates, when the stokeslet is also parallel, do 

not  die out  exponentially but  have O[(x~ + x2) -1]  behaviour.  In  compar ing  with the one 

plane case, it is found  that  for  H < 8h, the second wall disturbs the fields o f  the one plane 

case considerably in the whole region so to disregard its effect a relation h/H < �89 will be 
necessary in most  cases, 
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